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Cutting planes have been used with great success for solving mixed integer programs. In recent
decades, many contributions have led to successive improvements in branch-and-cut methods
which incorporate cutting planes in branch and bound algorithm. Using advances that have
taken place over the years on 0–1 knapsack problem, we investigate an efficient approach
for 0–1 programs with knapsack constraints as local structure. Our approach is based on an
efficient implementation of knapsack separation problem which consists of the four phases:
preprocessing, row generation, controlling numerical errors and sequential lifting. This ap-
proach can be used independently to improve formulations with cutting planes generated or
incorporated in branch and cut to solve a problem. We show that this approach allows us
to efficiently solve large-scale instances of generalized assignment problem, multilevel gener-
alized assignment problem, capacitated p-median problem and capacitated network location
problem to optimality.
Keywords: knapsack problem; cutting plane; exact separation; generalized assignment prob-
lem, multilevel generalized assignment problem, capacitated p-median problem, capacitated
network location problem.

1. Introduction

The binary integer linear programming problem consists of maximizing or mini-
mizing a linear function, subject to linear constraints and binary choice restrictions
on the variables. The binary integer programming problem can be expressed as

v1 = max
x
{cTx : Ax ≤ b, x ∈ {0, 1}n}. (1)

The input data are the matrices c ∈ Zn×1, A ∈ Zm×n, b ∈ Zm×1, which are supposed
to have integer entries. The decision binary variables xj ∈ {0, 1} for j ∈ N =
{1, . . . , n} are of great importance because they regularly occur in many model
formulations of real problems in business, engineering, science, transportation etc.

Let

X(A, b) = {x ∈ {0, 1}n : Ax ≤ b}

be the set of feasible solutions of (1). The linear programming relaxation of (1) is
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obtained by ignoring the integrality requirements on x, i.e.

v2 = max
x
{cTx : x ∈ R(A, b)}, (2)

where

R(A, b) = {x ∈ [0, 1]n : Ax ≤ b}

is its set of feasible solutions. Let P (A, b) be the convex hull of feasible solutions
of X(A, b), i.e.

P (A, b) = conv(X(A, b)).

The polyhedral approach uses the important facts that the set P (A, b) is a polyhe-
dron and the extreme points of P (A, b) are in X(A, b). Thus, (1) can be formulated
as the following equivalent linear program

v3 = max
x
{cTx : x ∈ P (A, b)}, (3)

i.e. v1 = v3.
The weakness of the above formulation (3) lies in the difficulty in giving an

explicit description of the inequalities defining P (A, b) particularly for NP-hard
problems. Moreover, in many cases the number of inequalities to describe P (A, b)
is exponential, in the literature there are several approaches which try to find
effective ways to construct improved approximations of P (A, b) recursively start-
ing from those defining R(A, b). However, it is not necessary to have an explicit
representation of a polyhedron P (A, b) in terms of linear inequalities in order to
optimise a linear function over P (A, b). It is enough to be able to solve the separa-
tion problem, which is a fundamental tool in polyhedral methods. Using advances
on knapsack separation problem that have taken place over the years, in this paper
we investigate an efficient approach for 0–1 programs with knapsack constraints as
local structure. This approach can be used independently to improve formulations
with cutting planes generated or incorporated in the branch-and-cut method to
solve the problem.

Let P̃ (A, b) =
m⋂
i=1

P (Ai, bi), where P (Ai, bi) = conv(X(Ai, bi)) with

X(Ai, bi) = {x ∈ {0, 1}n : Aix ≤ bi},

which define knapsack polytopes. It is trivial that P (A, b) ⊆ P̃ (A, b) ⊆ R(A, b). So
we have

v1 = v3 ≤ v4 ≤ v3

where

v4 = max
x
{cTx : x ∈ P̃ (A, b)}.

For some specially structured problem, like the generalized assignment problem
etc., v4 can be obtained using a dual formulation by the column generation ap-
proach or Lagrangian relaxations [15, 16, 32]. But it has been demonstrated that
the approach based on an exact knapsack separation algorithm in the cutting plane
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methods outperforms the methods used the column generation on the generalized
assignment problem and capacitated p-median problem [3, 9, 36]. In this paper we
propose a new implementation of this approach, where we try to make it more
efficient. In Section 2, we present exact separation problem and its specialization
to the knapsack separation. The quality of the resulting cuts focused on tighten-
ing the representation is illustrated via several BIP problems in Section 3. Finally,
Section 4 discusses conclusions.

2. Exact knapsack separation

The separation problem is one of the basic problems of convex analysis. In our
case, for a given point, we should recognize either the point belongs to a problem
polytope or find a separation hyperplane which cuts a point from the polytope.

More precisely, let a point x̄ ∈ Rn, and a polytope P be given. We have to prove
that x̄ ∈ P or find an inequality πTx ≤ π0 which is valid for P and such that
πTx > π0. This inequality is called a cutting plane. The separation problem can
be reduced to the following optimisation problem

v(x̄) = max
π∈Π

{
min
x∈P

{
πT x̄− πTx

}}
, (4)

where Π is a convex compact set containing the origin in its interior. If v(x̄) ≤ 0
then x̄ ∈ P , otherwise π∗ Tx ≤ π∗ T x̄ is the required cutting plane, where π∗ is an
optimal solution of (4). Problem (4) is convex and non-differential and it can be
transformed to the following linear program:

max
(π,π0)

[
x̄Tπ − π0

]
, (5)

hTπ ≤ π0 ∀h ∈ P, (6)

π ∈ Π. (7)

The separation problem (5)-(7) for the knapsack polytope was first studied by
Boyd [11–14] as a tool for Integer Programming. The recent papers by Fukasawa
and Goycoolea [23], Kaparis and Letchford [26] and the dissertations of P. Bonami
[10] and D. Espinoza [21] show a renewed interest in this topic. The exact separation
problem was also studied for other kinds of problems such that the the knapsack
set with a single continues variable [5], the general mixed knapsack set [23], the set
covering problem [4], the “local cuts” for the travelling salesman problem [1, 2].

Let us consider the exact separation in an application to the polytope of knap-
sack problem. Let X(a, b) = {x ∈ {0, 1}n : aTx ≤ b} be the set of feasible solutions
of a knapsack problem and P (a, b) = conv(X(a, b)) is the corresponding polytope.
First of all, the “normalization”, which is defined by the set Π, can be specified. It
is known for the general cutting plane algorithms [10, 19], that the normalization
can play a very important role in the efficiency of generated cuts. For the knapsack
polytope this issue has been studied in [3]. It has been shown that the normaliza-
tion, which provides us the maximum of the ratio between the violation and the
right hand side, gives better results in comparison with L1 and L∞ norms.

Due to the fact that the trivial inequalities xj ≥ 0 are facet-inducing and the
remaining facet-inducing inequalities have nonnegative coefficients, such a kind
of normalization can be expressed by posing the right-hand side to 1. Thus, the
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separation LP (5)-(7) for given x̄ for the knapsack polytope becomes:

x̄Tπ∗ = max
π

{
x̄Tπ : xTπ ≤ 1 ∀x ∈ X(a, b)

}
. (8)

If x̄Tπ∗ ≤ 1, then x̄ ∈ P (a, b); otherwise, π∗Tx ≤ 1 is a valid inequality separating
x̄ from P (a, b). There is also a very important property of this LP, that if π∗ is a
vertex of the feasible set of problem (8), this inequality is facet-inducing. Therefore
all our future studies focus only on this normalization.

In practice, problem (8) cannot be written explicitly because it contains a large
number of constraints. Our approach to solve it consists of the four following steps,
which are detailed in the subsections bellow:

Preprocessing. The fractional knapsack polytope

P (a, b, x̄) = {x ∈ P (a, b) : xj = x̄j , if x̄j ∈ {0, 1}}

is considered and some simple preprocessing is done.
Row generation. A cutting plane is found by solving the separation LP (8)
over the P (a, b, x̄) using a row generation algorithm.
Numerical errors. After a cutting plane has been generated, it is post-
processed to avoid numerical errors.
Sequential lifting. A resulting cut is lifted to the original space with the help
of the lifting theorem.

2.1. Preprocessing

Without loosing of generality, let us suppose that exactly k first variables are
unfixed in the fractional polytope P (a, b, x̄), i.e. it can be defined by

P (a, b, x̄) = conv(X(a, b, x̄)),

where

X(a, b, x̄) =

x ∈ {0, 1}k :
k∑
j=1

ajxj ≤ b̄

 , b̄ = b−
∑

j∈N :x̄j=1

aj .

Our preprocessing procedure is based on the following evident observations:

(1) If k = 0 or
k∑
j=1

aj ≤ b̄ then x̄ ∈ P (a, b, x̄) and a violated cut does not exist.

(2) Let us consider a subset of items which do not fit the fractional knapsack,
i.e. J0(x̄) = {j = 1, k : aj > b̄}. If J0(x̄) 6= ∅ then it immediately follows
that ∑

j∈J0(x̄)

xj ≤ 0

is a valid inequality for P (a, b, x̄) and it is violated by x̄, so it can directly
be passed to the sequential lifting.

(3) If k = 1, there is only one violated cut x1 ≤ 0 which can appear only in
case a1 > b̄, i.e. it is processed by the previous observations.
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(4) If k = 2, there is only one facet-inducing non-trivial inequality

x1 + x2 ≤ 1,

which can directly be passed to the sequential lifting in the case of violation.

2.2. Row generation

Separation problem (8) is a LP problem, where each row of the constraint matrix is
a feasible solution of the knapsack problem. Even for low-dimensional problems, one
hardly can enumerate all the feasible points. Row generation method is an iterative
approach where, at each iteration, a partial separation problem (the problem which
includes only a subset of the constraints) is considered. It starts with a subset of
constraints, which guarantee the boundedness of solution, then other constraints
are considered as cutting planes, i.e. they are dynamically added in the case of
violation. To check if there is any violated cut, a knapsack problem has to be
solved. The main steps of the row generation procedure are summarized below.

Step 0. Choose an initial subset of rows of the constrain matrix of problem (8)
U ⊂ X(a, b, x̄). To avoid the unboundness of partial separation problem, one can

take unit vectors as the initial set of constraints, i.e. U =
k⋃
i=1
{ei}.

Step 1. Solve the partial separation problem on the set U :

x̄T π̄ = max
π

{
x̄Tπ : xTπ ≤ 1 ∀x ∈ U

}
. (9)

Step 2. Check whether π̄ satisfies to all the constraints of problem (8). Then
find a solution of the knapsack problem:

h̄ ∈ Argmax
h
{π̄Th : h ∈ X(a, b, x̄)}.

Step 3. If h̄T π̄ > 1, then add h̄ to the constraint matrix of problem (9), i.e.
U := U ∪ {h̄}, and goto Step 1.
Step 4. If h̄T π̄ ≤ 1, then π̄ is a solution of separation problem (8) and π̄Tx ≤ 1
is a valid inequality for P (a, b, x̄), cutting h̄ if π̄T h̄ > 1.

The row generation procedure requires solving a large number of knapsack prob-
lems, so using efficient knapsack algorithms is a key issue. In our computational ex-
periments we used the modification of Pisinger’s MINKAP algorithm [34] that com-
bines dynamic programming with bounding and reduction technique. MINKNAP
algorithm requires all the coefficients of the knapsack problem being integer. How-
ever, in our case the objective function coefficients of the problems in the row gen-
eration routine can be fractional. Ceselli and Righini [16] modified the MINKNAP
algorithm to deal with real coefficients allowing us to solve the problem with the
given accuracy.

On Step 2 Kaparis and Letchford [26] have suggested the two following ways to
enhance the row generation:

(1) They try to solve the knapsack problems heuristically, and only call the
exact routine when the heuristic fails. They run the simple greedy heuristic
with improvements by a local search.

(2) They also try to “warm-start” the separation LP (9) by adding to the set
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of initial constraints the solutions which were generated in the previous call
of the separation routine.

We have tried both of these enhancements, but they do not affect the computa-
tional time in our implementation.

2.3. Numerical errors

The row generation method for solving LP-problems (Step 1) and the knapsack
problem with fractional coefficients of the objective vector (Step 2) may include
rounding errors. When searching for cuts, the effect of these errors may be sig-
nificant, thus leading to inequalities to be weak or even invalid. To generate safe
cutting planes, the obtained inequalities are post-processed to get the equivalent
cuts with integer coefficients and verified validity.

So, first of all we have to implement a scaled procedure, which finds a minimum
positive multiplier making all the coefficient of π̄ integer. It has been done by
solving a special integer programming problem in [3, 9]. Before solving the integer
problem, Kaparis and Letchford [26] have suggested the following heuristic rule,
which works in over 90% of cases. Divide π̄ by min

i=1,k
{π̄i−bπ̄ic : π̄i > 0}, and check

if the resulting vector is integral (within a tolerance of 10−5).
Our empirical study has shown, that the simplest enumeration of multipliers

from 2 to 104 and checking the integrality within the tolerance of 10−5 makes this
procedure very fast, as it will be illustrated in computational results in Section 3. If
the integral vector is not found in this range of multipliers, we skip this inequality
from the consideration to avoid further problems with the arithmetic overflow.

Let π̂ be a resulting integer vector. To prevent rounding errors and be sure that
the inequality is valid, the right hand side is computed as

π̂0 = max{π̂Tx : x ∈ X(a, b, x̄)}. (10)

Previously in [3, 9] this problem was solved by MINKNAP algorithm. We suggest
solving it by the dynamic programming algorithm, which will be discussed in the
next subsection, since it is closely linked with the our lifting procedure. All the
coefficients in the knapsack problem are integer, so the solution is exact and we
are sure that the inequality π̂Tx ≤ π̂0 is valid for P (a, b, x̄) and it is passed to the
sequential lifting procedure if it remains violated by x̄.

2.4. Sequential lifting

As it has been illustrated in [3], the most time consuming part on the separation
routine is the sequential lifting, therefore we pay more attention to this issue.

Initially we have the solution of problem (10) and due to the lifting theorem we
have to do the following:

Up-lifting. If we have that x̄k+1 = 0 then the lifted inequality is

k∑
j=1

π̂jxj + (π̂0 − π0
k+1)xk+1 ≤ π̂0,
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where

π0
k+1 = max


k∑
j=1

π̂jxj :
k∑
j=1

ajxj ≤ b̄− ak+1, x ∈ {0, 1}k
 . (11)

Down-lifting. If we have that x̄k+1 = 1 then the lifted inequality is

k∑
j=1

π̂jxj + (π1
k+1 − π̂0)xk+1 ≤ πk+1,

where

π1
k+1 = max


k∑
j=1

π̂jxj :
k∑
j=1

ajxj ≤ b̄+ ak+1, x ∈ {0, 1}k
 . (12)

Let us look more attentively at problems (10)-(12). First of all we have to mention
that we are not interested in their solution vectors, we only need the optimal values.
Moreover we have the knapsack problems which have only different capacities. So
if we solve the knapsack problem (10) with maximum possible capacity b̄ by the
dynamic programming algorithm, we immediately have the optimal values of all
the problems (10)-(12).

Actually, we can use the dynamic programming algorithm in the following way
(see for example [27, 30]). Let zi(β) be the optimal values of knapsack problem (10)

with i variables and capacity β for i = 1, k and β = 0, b̄. It can be computed by
the following recursion formulas:

z1(β) =

{
0, if β < a1

π̂1, if β ≥ a1

zi(β) =

{
zi−1(β), if β < a1

max{zi−1(β), zi−1(β − ai) + π̂i}, if β ≥ a1
(13)

We immediately have that

π̂0 = zk(b̄), π0
k+1 = zk(b̄− ak+1), π1

k+1 = zk(b̄+ ak+1).

To lift the next variable we have to assign

π̂k+1 = π̂0 − π0
k in the case of up-lifting,

π̂k+1 = π1
k+1 − π̂0, π̂0 = π1

k+1, b̄ := b̄+ ak+1 in the case of down-lifting,

and compute zk+1(β) for β = 0, b̄ by (13).
Thus, the complexity of solving problem (10) and lifting all the nonfractional

variables is O(n · b̄) and it requires only O(b̄) of memory because we do not need
solution vectors. This procedure allows us to drastically reduce the computational
time in comparison to solving problems (10)-(12) separately by the MINKNAP
algorithm as in [3, 9, 26].

The lifting procedure is sequential and the resulting valid inequality depends on
the order of lifting. We have tried different orders and their comparison is given in
Section 3.
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3. Computational results

The proposed algorithm has been implemented in C/C++ and linked with IBM
ILOG CPLEX optimizer 12.11 library for solving linear programming problems and
as a branch-and-cut framework. Computational experiments were carried out on
an Intel Core 2Quad CPU 2.6GHz workstation with 4Gb of RAM, under Windows
XP64. We did not use multithreads, so computations are limited to a single core.

In Subsection 3.1 different variants of our approach are tested on the Generalized
Assignment Problem (GAP) in order to find the best one. There is also comparison
with CPLEX solver and the state-of-the-art approach proposed by Posta et al. [35].
In the next subsection, the computational experiments on the Multilevel General-
ized Assignment Problem, Capacited p-Median Problem and Capacitated Network
Location Problem are presented.

Kaparis and Letchford [26] have tested the exact and different other knapsack
inequalities for non specially structured instances: instances taken from MIPLIB1

and multi-dimensional knapsack problem taken from ORLIB [7]. We have tried
them, but do not give any computational results because the exact knapsack sepa-
ration has shown to be useless from a practical point of view. Actually, either the
separation takes much more time than finding an optimal solution by CPLEX or
the closed gap is negligible. Unfortunately, their code is not still available we have
not been able to do any comparison.

Our code, problems instances are publicly available and can be found at
iv.icc.ru/papers.html.

3.1. Generalized Assignment Problem

Let M = {1, . . . ,m} be a set of machines and let N = {1, . . . , n} be a set of tasks
to be assigned to the machines from M . Let cij be the cost of assigning the task j
to the machine i. Let dij be the amount of resource required by the machine i to
perform the task j. Each machine has a limited amount of resources available. Let
ui be the capacity of the machine i ∈M .

The Generalized Assignment Problem (GAP) is to find a minimum assignment
cost of the tasks N to the machines M satisfying the constraint that the total
amount of resources required by each machine i ∈M does not exceed its capacity
ui.

Let xij be a binary variable expressing the assignment of the task j ∈ N to the
machine i ∈M . The GAP can be formulated as:

min
x

∑
i∈M

∑
j∈N

cijxij

∑
i∈M

xij = 1, j ∈ N (14)

∑
j∈N

dijxij ≤ ui, i ∈M (15)

xij ∈ {0, 1}, i ∈M, j ∈ N (16)

Constraints (14) require that each task must be assigned to a machine. Capacity
constraints (15) enforce the condition that the amount of resources required by the

1http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
1http://miplib.zib.de/



March 22, 2013 Optimization Methods and Software KSpaper

9

ncuts SEP(sec) RG(%) SCALE(%) LIFT(%)
n old new old new old new old new old new

100 3172 3172 16.8 12.0 69.9 99.0 16.3 0.0 13.8 1.0
200 3977 3977 36.2 19.8 54.1 97.9 9.7 0.0 36.2 2.1
400 8257 8242 112.3 29.1 24.0 95.8 6.4 0.1 69.6 4.1
900 12253 12316 626.4 52.3 7.7 89.5 2.0 0.0 90.4 10.3

1600 17117 17172 2196.2 68.2 2.5 81.0 1.0 0.0 96.5 18.9
Table 1. Comparison with previous version

tasks assigned to the machine i does not exceed its capacity ui and we can apply
our separation routine over them.

Because of its computational difficulty, GAP is a challenging integer program-
ming problem, which is widely addressed in literature. A short survey and com-
prehensive list of references concerning this problem can be found in recent papers
[3, 35].

We consider test instances included in the OR-Library [8]. The test-bed consists
of three types of instances (C, D, E) with size from 5× 100 to 80× 1600. They are
named according to their type and size, e.g. d05100 is an instance of type D with
m = 5 machines and n = 100 tasks.

The computational results of the previous version of exact knapsack separation
have been given for GAP and CPMP in [3, 9]. The branch-and-cut algorithm
with this cutting plane procedure outperforms CPLEX and the branch-and-price
algorithms [16, 33], which were the state-of-the-art approaches at that moment.

The results of comparison the previous version of cutting plane algorithm and
version considered in this paper is presented in Table 1. The main differences
between them are in the scaling procedure described in Section 2.3 and lifting from
Section 2.4. We give the total results of instances with the same knapsack size, i.e.
when the number of jobs is the same. We limit the number of generated cuts if
their number exceeds 3000 on some iteration of cutting plane procedure then we
stop. There are nine instances of each dimension. The notations in the table are
the following:

n — knapsack size;
ncuts — total number of cuts generated for all instances of corresponding di-
mension;
SEP(sec) — total time spent in separation routine in seconds;
RG(%) — time spent in the row generation relative to the computational time
of complete separation in routine in percents;
SCALE(%) — time spent in the scaling procedure in percent;
LIFT(%) — time spent in the sequential lifting in percent;
old — results of previous version from [3];
new — results of the version presented in this paper.

As you can see in the table and as it has been pointed out in [3], the bottleneck
of the exact separation routine is the lifting procedure. If we do not focus on small
instances, we can conclude that we noticeably reduce the computational time. It
has been done mainly thanks to the enhanced lifting procedure, which evidently
shows its efficiency. The computational time of the scaling procedure has become
negligible, which improves the results as well.

Thus the row generation is the most time consuming part of the separation rou-
tine. It is known that MINKNAP algorithm is very efficient for different knapsack
instances [27, 34]. Therefore we have decided to check it for our case. Actually, it
has been mentioned in [3] that the size of knapsack problems is usually small in row
generation, and it might happen that the simple algorithms from textbooks [27, 30]
are more effective than the sophisticated MINKNAP. The computational results
are given in Table 2, where the ratio of the computational time spent in knapsack
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KNAP/RG(%)
n MINKNAP DP DPR BB

100 4.2 12.3 5.4 6.8
200 4.3 14.0 8.9 6.7
400 3.5 13.8 8.6 6.2
900 3.4 10.9 8.5 8.3

1600 3.4 10.2 6.3 14.3
Table 2. Comparison of different knapsack algorithms

ncuts SEP time CP time
n EKS LCI+EKS EKS LCI+EKS EKS LCI+EKS

100 3172 3103 11.988 11.455 14.623 14.125
200 3977 3920 19.812 20.958 25.547 26.968
400 8242 8437 29.091 29.644 76.735 93.343
900 12316 12574 52.342 53.381 165.269 167.189

1600 17172 17464 68.179 64.287 606.124 628.874
Table 3. Comparison of results with the LCI separation

algorithm and total time of row generation (in percents) is given for the following
knapsack algorithms: MINKNAP is the modification of Pisinger’s MINKNAP al-
gorithm, DP is a genetic dynamic programming algorithm, DBR is the dynamic
programming algorithm with eliminating of dominated states, BB is the simplest
branch-and-bound algorithm based on the LP relaxation bounds. As the reader
can see in the table, the MINKNAP remains the most efficient for our case as well.

We can also mention from Table 2 that the knapsack algorithm does not take
much time in the row generation, so the main part of time is spent in optimising
the separation LP by CPLEX, which we cannot improve directly. To draw this
obstacle Kaparis and Letchford [26] have recommended to separate the Lifted Cover
Inequalities (LCI) before the exact separation routine, since the LCI separation is
very fast and effective. We have also tried this strategy. The results are presented in
Table 3, where in columns EKS the results are given for cutting plane algorithms
only with the exact knapsack separation, LCI+EKS — results with the separation
of LCI. SEP time and CP time denoting the computational time of the separation
routines and the complete cutting plane algorithm correspondingly are given in
seconds. It is readily seen that the separation time is similar, but the complete
cutting plane takes more time with LCI since more cuts are generated.

To complete the tuning of the exact separation routine we have tested different
orders of variables in sequential lifting. The following four strategies have been
tested:

LIFT1 — the variables, which are fixed to one, are down-lifted first, and then
the variables, which are fixed to zero, are up-lifted. This strategy has been used
in [3, 9] and in the previous experiments of this paper. This lifting order keep
the facet-inducing property, i.e. if the initial inequality is facet-inducing then the
resulting one is facet-inducing as well.
LIFT2 — Kaparis and Letchford [26] have suggested to firstly consider the
variables for up-lifting for which ai > β. It immediately follows that their lifting
coefficients can be set to 0 and it can make the lifting procedure faster.
LIFT3 — Variables are lifted in increasing order of their reduced costs.
LIFT4 — Variables are lifted in decreasing order of their reduced costs, which
is a counterpart of the previous strategy.

The number of generated cuts, computational time in separation and cutting
plane algorithms for all the considered strategies are presented in Table 4. In con-
trast to [26], LIFT2 has not given the best results. In our opinion it has happened
because the lifting procedure is quite fast in our version and this strategy does give
any advantage. On the other hand, LIFT1 ensures us to have the facet-inducing
inequality and generates the less number of cuts, so this lifting order is used in the
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ncuts SEP time (secs)
n LIFT1 LIFT2 LIFT3 LIFT4 LIFT1 LIFT2 LIFT3 LIFT4

100 3172 3685 2982 3786 12.0 13.5 10.9 14.9
200 3977 4611 3741 4621 19.8 24.7 20.4 25.1
400 8242 9640 7886 9555 29.1 42.4 29.4 41.5
900 12316 14812 11784 14834 52.3 81.4 53.0 83.7

1600 17172 19445 16018 19640 68.2 117.1 69.9 110.4

CP time (secs)
n LIFT1 LIFT2 LIFT3 LIFT4

100 14.6 16.7 13.1 18.3
200 25.5 31.7 25.9 31.9
400 76.7 162.1 90.7 151.4
900 165.3 264.5 171.5 277.2

1600 606.1 845.2 605.9 1710.8
Table 4. Comparison of lifting orders

further experiments as well.
Now let us consider how the generated cuts can be useful for finding optimal

solutions. The results of the previous version of our approach are presented in [3]
and they are the best in comparison with CPLEX and the state-of-the-art branch-
and-price algorithms [33]. We are updating these results with the results of our
new version.

The computational results of the cut-and-branch (i.e. the separation routing is
used only in the root node of branch-and-bound tree) in columns C&B in compar-
ison with CPLEX (CPX) and an approach POSTA proposed by Posta et al. [35],
which consists of solving a series of decision problems by a lagrangean branch-and-
bound algorithm with a few variable fixing rules, are presented in Table 5. OPT is
an optimal value and the computational time is given for two cases: Proof — when
the methods are run with the given optimal values, i.e. we just prove that these
values are optimal; Search — when the methods are run from the scratch. The re-
sults are given on instances, for which it is possible to find an optimal solution with
the time limit of two hours and given memory. The blanc cells of the table mean
that the corresponding method cannot solve the problem with the given limits. We
can see that the proposed cutting planes sufficiently improve CPLEX branch and
bound, but they are inferior to the approach specially developed for GAP except of
two cases c60900, c201600. Using the branch-and-cut (i.e. the separation routine
is used in any node of branch-and-bound tree) we can proof the optimality of the
solution for c401600 in 1845.1 seconds while POSTA do it in 7835.27 seconds.

3.2. Multilevel Generalized Assignment Problem

In the context of large manufacturing systems, a variant of generalized assignment
problem was suggested in [24]. In such systems machines can perform tasks in
different “levels”, which entails different costs and different amount of resources
required. In addition to the GAP, a set K = {1, . . . , k} of levels is considered.
Consequently cijk is the cost of assigning the task j to the machine i at the level
k, dijk is the corresponding amount of resources required and a binary variable
xijk expresses such kind of assignment. The Multilevel Generalized Assignment
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Proof Search
Name OPT C&B POSTA CPX C&B POSTA

c05100 1931 0.2 0.0 0.1 0.3 0.0
c10100 1402 0.3 0.1 0.5 0.7 0.1
c20100 1243 0.2 0.1 0.4 0.4 0.2
d05100 6353 5.0 0.8 37.2 19.9 3.3
d10100 6347 203.4 8.6 1377.2 26.7
e05100 12681 0.9 0.2 1.2 1.0 0.7
e10100 11577 2.5 0.6 17.4 4.1 1.9
e20100 8436 3.3 0.8 0.0 15.7 1.6
c05200 3456 1.0 0.2 0.2 0.9 0.3
c10200 2806 1.1 1.5 5.0 3.1 2.0
c20200 2391 0.4 0.1 4.0 2.8 0.5
d05200 12742 6.5 0.8 307.5 572.5 1.4
e05200 24930 0.6 0.1 0.1 1.0 0.4
e10200 23307 5.5 1.9 20.3 4.6 3.2
e20200 22379 2.2 0.4 120.9 3.6 0.6
c10400 5597 3.3 1.7 14.3 3.3 2.9
c20400 4782 10.5 6.3 3871.7 16.7 16.3
c40400 4244 0.8 1.9 21.2 3.2 6.4
e10400 45746 1.5 0.4 1.5 14.2 0.6
e20400 44877 3.0 0.6 2946.8 21.2 1.3
e40400 44561 138.2 36.5 203.3 67.5
c15900 11340 4.0 1.7 300.6 411.4 11.1
c30900 9982 2.8 2.2 393.6 240.8
c60900 9326 41.1 131.6
e15900 102421 2.0 0.6 564.4 12.0 2.3
e30900 100427 20.1 0.5 58.9 2.9
e60900 100149 104.5 877.6

c201600 18802 2.8 2.3 1867.2 3744.9
e201600 180645 17.7 23.1 167.1 25.8
e401600 178293 10.8 2.4 578.5 156.8
e801600 176820 66.6 7.8 1076.4 48.7

Table 5. Results on GAP instances

Problem (MGAP) can be formulated as:

min
x

∑
i∈M

∑
j∈N

∑
k∈K

cijkxijk

∑
i∈M

∑
k∈K

xijk = 1, j ∈ N (17)

∑
j∈N

∑
k∈K

dijkxijk ≤ ui, i ∈M (18)

xijk ∈ {0, 1}, i ∈M, j ∈ N, k ∈ K (19)

Heuristic approaches for the MGAP was proposed in [22, 28]. A branch and cut
algorithm was able to solve only small instances [31]. The most recent results were
obtained in [18] by the branch and price (B&P) algorithm on instances up to 80
machines, 400 task and 5 levels. Nowadays it is a state-of-the-art exact approach
for the MGAP.

The B&P algorithm was tested on generated instances of three types (C, D, E).
The instances of type C are very easy and they can be solved by CPLEX in a few
second. The instances of type D are very hard to solve, and they are not tractable
by our approach. Therefore we tested our approach on instances of type E. The
results are presented in Table 6. We skip the “easy” instances, i.e. the instances for
those CPLEX can find the optimal solutions in less than 10 seconds. Only the non-
easy instances will be considered in the further experiments. The computational
time of B&P is given which was obtained on a PC with Intel P4 1.6GHz CPU and
512 MB of RAM.

By the same way as in [18] we tested our approach on large-scale instances which
were obtained from the GAP instances with 400, 900 and 1600 tasks. These tasks
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Proof Search
Name m n k OPT C&B CPX C&B CPX

E1010003-5 10 100 3 10757 1.7 2.4
E1010005-3 10 100 5 10576 1.1 85.9 4.4 10.7
E1010005-4 10 100 5 10355 1.0 26.5 2.0
E2010003-1 20 100 3 7136 1.2 2.9
E2010003-2 20 100 3 7352 4.1 11.8
E2010003-3 20 100 3 7239 5.6 15.2
E2010003-4 20 100 3 7289 1.9 4.5 1666.5
E2010003-5 20 100 3 7494 1.5 2.7 523.1
E2010004-1 20 100 4 6373 5.5 8.5
E2010004-2 20 100 4 6374 3.3 10.9 966.6
E2010004-3 20 100 4 7050 3.7 22.1
E2010004-4 20 100 4 7090 2.4 4.7 509.1
E2010004-5 20 100 4 7090 2.5 573.5 3.7 136.5
E2010005-1 20 100 5 6074 3.9 12.3
E2010005-2 20 100 5 6213 2.8 6.0
E2010005-3 20 100 5 6554 5.3 7.1
E2010005-4 20 100 5 6338 3.3 11.2
E2010005-5 20 100 5 5975 5.6 22.6
E3010003-1 30 100 3 4224 12.5 70.8
E3010003-2 30 100 3 4647 48.6 47.7
E3010003-3 30 100 3 4528 27.7 62.1
E3010003-4 30 100 3 4353 21.7 81.9
E3010003-5 30 100 3 4298 28.0 102.0
E3010004-1 30 100 4 4258 8.2 23.2
E3010004-2 30 100 4 4286 22.7 85.2
E3010004-3 30 100 4 4449 11.5 30.3
E3010004-4 30 100 4 4213 25.1 78.2
E3010004-5 30 100 4 4215 13.7 57.2
E3010005-1 30 100 5 3888 21.6 84.5
E3010005-2 30 100 5 4015 10.3 55.0
E3010005-3 30 100 5 4152 11.8 30.6
E3010005-4 30 100 5 3988 9.4 24.5
E3010005-5 30 100 5 4090 6.0 18.3
E1520004-1 15 200 4 25320 2.7 5.7 1113.4
E1520004-2 15 200 4 27622 1.2 1679.0 3.1 49.0
E1520004-3 15 200 4 26368 1.7 364.5 4.9 20.5
E1520004-4 15 200 4 23177 2.6 5.2 1502.5
E1520004-5 15 200 4 23383 2.2 6.3 90.2
E1520005-1 15 200 5 22117 4.6 10.8 282.6
E1520005-2 15 200 5 21160 2.3 4.9 277.4
E1520005-3 15 200 5 21393 3.1 9.3 25.2
E1520005-4 15 200 5 21138 2.7 916.2 7.4 47.5
E1520005-5 15 200 5 21055 1.9 748.0 5.8 95.5
E3020004-1 30 200 4 17171 7.4 16.4
E3020004-2 30 200 4 17258 6.2 17.9
E3020004-3 30 200 4 16658 25.7 57.4
E3020004-4 30 200 4 16851 8.0 42.9
E3020004-5 30 200 4 18196 4.5 9.6
E3020005-1 30 200 5 16635 6.7 18.8
E3020005-2 30 200 5 17461 8.1 27.2
E3020005-3 30 200 5 17233 10.8 24.3
E3020005-4 30 200 5 16455 5.7 16.0
E3020005-5 30 200 5 16202 10.1 25.0

Table 6. Results on MGAP instances

are divided in 2, 3 and 4 levels with the corresponding adjustments of the capacities.
In Table 8 the results on instances of type C and E are presented and they are also
compared with the B&P.

From the presented results it is evidently seen that the proposed cutting planes
substantially increase the efficiency of the CPLEX solver and, in spite of the fact
that our PC can be in 3-4 times faster, make it very competitive with the B&P
algorithm.

3.3. Capacitated p-Median Problem

Let G(V,A) be a complete digraph, with node set V = {1, . . . , n}, arc set A =
{ij : i ∈ V, j ∈ V } and costs cij , ij ∈ A, usually called “distances”. A demand di
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m n k C&B B&P
10 100 3 3.1 63.5
10 100 4 1.2 10.7
10 100 5 2.3 14.4
20 100 3 7.4 53.9
20 100 4 10.0 80.7
20 100 5 11.8 68.6
30 100 3 72.9 598.0
30 100 4 54.8 274.4
30 100 5 42.6 190.9
15 200 4 5.0 975.2
15 200 5 7.6 1037.2
30 200 4 28.8 199.2
30 200 5 22.2 271.3

Table 7. Comparison with the branch and price on MGAP instances

Proof Search
Name m n k OPT C&B CPX C&B CPX B&P

c10400 10 200 2 2378 0.5 0.6 2.0 28.9 757.7
e10400 10 200 2 22172 1.8 63.7 7.6 13.2 17473.8
e20400 20 200 2 22080 2.9 4.8 327.7 121.9
e40400 40 200 2 22031 3.1 10.1 151.9
e15900 15 300 3 33334 3.6 3111.7 13.9 58.2 6607.2
e30900 30 300 3 33097 12.3 50.7 1759.1
e60900 60 300 3 33106 4.2 10.8 522.5 313.6

e201600 20 400 4 44160 9.0 71.2 993.3 12996.3
e401600 40 400 4 43910 22.3 64.5 3188.5
e801600 80 400 4 43762 4.9 8.6 8.3 28.7 2685.8

Table 8. Results on large-size MGAP instances

and a capacity qi are associated with each node i ∈ V . The Capacitated p-Median
problem (CPMP) consists of finding p nodes (the median nodes) minimizing the
total distance to the other nodes of graph, with the additional requirement that
the total demand of the nodes assigned to each median node i does not exceed its
capacity qi.

Let yi be the binary variable associated with the node i ∈ V (yi = 1 if node i is
a median, 0 otherwise) and let xij be the binary variable associated with the arc
ij ∈ A (xij = 1 if node j is assigned to median node i, 0 otherwise). The Integer
Linear Programming formulation of CPMP is:

v = min
∑
ij∈A

cijxij (20)

s.t. ∑
i∈V

xij = 1, j ∈ V (21)

∑
i∈V

yi = p (22)

∑
j∈V

djxij ≤ qiyi, i ∈ V (23)

yi ∈ {0, 1}, i ∈ V (24)

xij ∈ {0, 1}, ij ∈ A (25)

Equality constraints (21) impose that each node is served by one node only. The
number of median nodes is enforced by the equality (22). Capacity constraints (23)
ensure that the total demand of the nodes assigned to the median node i cannot
exceed its capacity qi. Variable Upper Bound constraints xij ≤ yi, ij ∈ A could be
added to strengthen the formulation (20)-(25). Formulation (20)-(25) is the same
used in [16] and it is more general than that used in [6], where it is supposed that
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Proof Search
Name n OPT B&C CPX B&C CPX

dd1 100 17289.0 2.6 15.6 3.5 42.0
dd2 200 33270.9 23.2 8.9 37.8 33.3

dd3a 300 45335.2 33.3 43.8 50.5 73.4
dd3b 300 40635.9 13.5 10.8 5.6 21.0
dd4a 402 61925.5 262.3 173.0 379.9 423.8
dd4b 402 52458.0 141.5 37.0 147.4 62.4

Table 9. Results on CPMP instances from [29]

yi = xii, i ∈ V . So it is assumed that the graph contains self loops ii ∈ A for all
i ∈ V and that a median node could be assigned to another one.

The previous version of our approach has been tested and compared with the
CPLEX and a state-of-the-art branch-and-price algorithm [16] on instances pre-
sented ibidem (instances with names cpmpXX) and in [29] (instances with names
ddXX). As it has outperformed the branch-and-price (and actually, CPLEX has
outperformed the branch-and-price as well) and the new version cannot be less ef-
ficient, we compare our result only with the current version of CPLEX. The results
are given in Tables 9-11 with the same notation as for the GAP. In most cases the
cut-and-branch algorithm is more effective than CPLEX.

Some blank cells can be filled using the branch-and-cut algorithm, whose results
are given in table 12. We have only cpmp32 and cpmp34 of type β unsolved to
optimality yet.

3.4. Capacitated Network Location Problem

By generalizing the CPMP, Ceselli et al. [17] generated different problems, which
they named as the Capacitated Network Location Problems (CNLP). Their first
test bed was based on the single source capacitated facility location problem in-
stances of Holmberg et at.[25], Diaz and Fernández [20]. By modifying the fixed
costs and adding the cardinality constraints (like in the CPMP) 4 types of problem
instances were generated (a, b, c, d). Holmberg instances are easy and they are
omitted. In Table 13 there are only the Diaz instances for which CPLEX cannot
find the optimal solutions in 10 seconds. Also the results of the B&P algorithm are
given, which are taken from the paper [17] and which were obtained on the same
PC as for the MGAP.

There are also instances based on the CPMP in [17], but they are not available
and, thus, are not included into the consideration.

4. Conclusions

In this paper we are reporting on the computational experiments on a new im-
plementation of the exact separation over the 0-1 knapsack polytope. The careful
elaboration of all algorithm elements (especially the lifting procedure) and their cor-
rect tuning make this approach much more efficient. It was proved on the following
problem whose constraints have a distinct knapsack structure: the Generalized As-
signment Problem (GAP), Multilevel Generalized Assignment Problem (MGAP),
Capacitated p-Median Problem, Capacitated Network Location Problem.

The computational results apparently show that for these problem the proposed
approach can be a very competitive counterpart to the branch and price approach.
Another advantage of our approach that it deals with the explicit standard for-
mulation of these problems, containing only the original variables. The user can
easily use our separation procedure in the standard Branch and Cut frameworks,
like IBM ILOG CPLEX, without deep diving in the exigeant implementation of
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Proof Search
Name n type OPT C&B CPX C&B CPX

cpmp08 50 α 820 23.2 11.4 20.8 19.6
cpmp14 100 α 982 15.4 5.0 30.8 19.4
cpmp15 100 α 1091 13.0 10.6 21.1 14.5
cpmp18 100 α 1043 13.6 4.0 14.8 19.0
cpmp20 100 α 1005 211.4 204.5 648.1 428.7
cpmp21 150 α 1288 18.6 8.6 39.3 49.7
cpmp22 150 α 1256 41.2 43.3 107.9 220.7
cpmp23 150 α 1279 2.8 7.1 6.5 11.9
cpmp24 150 α 1220 6.8 14.6 11.7 16.5
cpmp26 150 α 1264 59.9 11.6 76.4 28.7
cpmp27 150 α 1323 181.8 172.1 234.4 179.2
cpmp31 200 α 1378 27.3 9.8 42.9 24.8
cpmp32 200 α 1424 360.3 1324.0 531.0 3721.8
cpmp33 200 α 1367 35.3 16.9 126.5 65.8
cpmp34 200 α 1385 163.0 57.3 241.1 609.5
cpmp35 200 α 1437 78.3 33.7 206.2 114.7
cpmp36 200 α 1382 13.1 10.5 36.0 69.1
cpmp37 200 α 1458 28.0 8.4 51.0 22.7
cpmp38 200 α 1382 127.0 59.1 338.3 353.5
cpmp39 200 α 1374 20.9 6.8 87.7 13.7
cpmp40 200 α 1416 13.2 11.2 86.1 24.3
cpmp04 50 β 384 48.0 25.0 46.0 30.5
cpmp07 50 β 445 51.5 29.1 18.4 22.3
cpmp09 50 β 436 4.0 6.6 8.2 10.6
cpmp10 50 β 461 16.7 21.3 33.0 37.3
cpmp11 100 β 544 20.4 69.0 39.3 83.1
cpmp12 100 β 504 4.9 6.4 16.3 17.7
cpmp13 100 β 555 40.3 74.5 131.1 90.8
cpmp14 100 β 544 21.3 21.1 28.8 57.0
cpmp15 100 β 583 12.6 46.3 27.2 79.7
cpmp16 100 β 534 261.7 1019.7 340.4 594.5
cpmp18 100 β 508 4.3 6.6 11.7 10.5
cpmp19 100 β 551 116.5 203.0 164.6 212.2
cpmp20 100 β 555
cpmp21 150 β 681 14.1 20.3 18.0 20.3
cpmp22 150 β 660 75.2 1562.3 218.0 1272.6
cpmp23 150 β 663 611.8 5357.6 811.4 4132.7
cpmp24 150 β 594 21.3 71.8 22.6 50.0
cpmp26 150 β 653 12.4 20.6 21.8 15.1
cpmp27 150 β 736 1831.0 604.6 5969.5
cpmp28 150 β 644 37.6 30.1 47.4 26.4
cpmp29 150 β 649 11.4 14.2 24.3 10.3
cpmp30 150 β 630 24.7 63.7 46.9 132.6
cpmp31 200 β 727 258.9 2600.6 225.3 4317.2
cpmp32 200 β 832
cpmp33 200 β 713 636.7 791.3
cpmp34 200 β 816
cpmp35 200 β 746 1308.4 776.2 6252.1
cpmp36 200 β 701 45.4 472.5 105.1 151.6
cpmp37 200 β 753 14.4 35.9 35.3 79.6
cpmp38 200 β 746 943.7 5020.3 762.0
cpmp39 200 β 722 53.5 60.9 111.1 716.6
cpmp40 200 β 763

Table 10. Results on CPMP instances, types α and β

the Branch and Price algorithm.
Of course, the proposed approach cannot be the best for all cases even for the

considered problems. For example, it loses the specially designed algorithm for the
GAP, and it is not efficient for the GAP and MGAP instances of type D. But
it can be useful tool to couple with others methods, which take more advantage
from the study of specific problem structure. Such kind of the study can open new
directions for the further investigations.
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Proof Search
Name n type OPT C&B CPX C&B CPX

cpmp08 50 γ 353 18.3 48.1 35.5 101.9
cpmp10 50 γ 390 9.8 42.9 12.5 53.1
cpmp12 100 γ 391 17.1 71.0 27.2 61.0
cpmp14 100 γ 447 11.8 47.0 14.8 46.5
cpmp16 100 γ 447 34.2 214.0 140.5 109.7
cpmp18 100 γ 456 12.3 110.3 22.0 87.8
cpmp19 100 γ 445 19.4 32.3 20.4 26.3
cpmp20 100 γ 460 12.4 87.8 34.6 252.5
cpmp21 150 γ 599 152.4 995.0 206.3 733.1
cpmp22 150 γ 561 201.5 3514.7 570.1 3988.2
cpmp23 150 γ 564 32.6 597.0 90.0 800.0
cpmp24 150 γ 505 21.0 113.8 98.9 108.0
cpmp26 150 γ 540 3.6 166.3 7.9 26.4
cpmp27 150 γ 579 40.6 234.6 104.4 199.6
cpmp28 150 γ 503 5.2 13.9 5.8 13.3
cpmp29 150 γ 545 47.6 1006.1 60.9 473.0
cpmp30 150 γ 502 21.3 467.1 51.0 124.5
cpmp31 200 γ 575 5.5 63.4 6.8 21.8
cpmp32 200 γ 724
cpmp33 200 γ 618 1615.0 3511.7
cpmp34 200 γ 709 3288.8
cpmp35 200 γ 611 349.5 3724.3 525.0 5209.9
cpmp36 200 γ 580 45.4 390.7 110.1 692.8
cpmp37 200 γ 631 1625.4 5517.7 3845.8
cpmp38 200 γ 608 94.6 1320.9 122.3 350.3
cpmp39 200 γ 589 216.2 5720.9 713.5 724.1
cpmp40 200 γ 630 183.9 498.8
cpmp08 50 δ 312 3.8 21.1 7.6 16.1
cpmp09 50 δ 412 3.4 38.5 6.8 41.1
cpmp10 50 δ 458 8.9 118.0 8.9 254.8
cpmp11 100 δ 415 5.8 58.2 17.7 21.9
cpmp12 100 δ 377 15.4 233.0 29.1 82.3
cpmp14 100 δ 421 9.0 29.7 22.5 20.5
cpmp15 100 δ 496 7.4 59.7 12.0 10.6
cpmp16 100 δ 428 2.4 85.1 5.7 24.1
cpmp17 100 δ 440 13.1 100.6 40.7 31.8
cpmp18 100 δ 450 16.1 66.4 59.1 31.4
cpmp19 100 δ 450 8.7 92.0 20.2 62.9
cpmp20 100 δ 486 19.1 173.4 65.9 330.2
cpmp21 150 δ 552 15.3 116.5 28.4 38.5
cpmp22 150 δ 601 166.5 250.5
cpmp23 150 δ 555 39.4 1298.6 121.5 988.6
cpmp24 150 δ 487 238.1 2590.2 200.2 269.8
cpmp25 150 δ 436 10.3 276.1 20.8 44.2
cpmp26 150 δ 512 5.6 36.4 7.3 26.1
cpmp27 150 δ 743
cpmp28 150 δ 471 21.2 413.7 71.1 55.1
cpmp30 150 δ 444 5.6 109.7 7.0 19.8
cpmp31 200 δ 541 258.2 2505.7 1844.0
cpmp32 200 δ 802
cpmp33 200 δ 557 90.1 1578.2 149.2 344.8
cpmp34 200 δ 845 1114.7 1586.7
cpmp35 200 δ 552 17.3 906.6 32.5 5245.7
cpmp36 200 δ 551 75.3 3105.3 154.8 1774.8
cpmp37 200 δ 594 360.1 6795.2 381.6 1624.0
cpmp38 200 δ 592 63.3 2976.3 43.0 1820.0
cpmp39 200 δ 540 166.1 1803.5 238.0 595.1
cpmp40 200 δ 588 1316.4 1349.0

Table 11. Results on CPMP instances, types γ and δ

Name n type OPT Proof B&C
cpmp20 100 β 555 14248.2
cpmp40 200 β 762 38480.1
cpmp32 200 γ 724 213392.6
cpmp27 150 δ 743 54660.5
cpmp32 200 δ 802 82002.0

Table 12. Results of the branch-and-cut on CPMP instances
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Proof Search
Name m n type OPT C&B CPX C&B CPX B&P
p20-a 20 40 a 26561 1.0 22.5 1.5 26.7
p21-a 20 40 a 7295 1.4 8.6 2.1 13.1
p26-a 20 50 a 4448 1.1 5.3 2.0 12.5 365.2
p30-a 20 50 a 10816 4.1 6260.3 47.7
p31-a 20 50 a 4466 1.2 4.3 2.4 13.6 2864.4
p33-a 20 50 a 39463 8.8 1056.5 20.3 3061.7
p36-a 30 60 a 16781 1.7 45.0 2.5 23.3 2008.7
p37-a 30 60 a 14668 3.8 3.9 17.5 12.2
p39-a 30 60 a 41007 1.0 4.4 6.3 34.3 856.1
p40-a 30 60 a 61633 2.4 44.2 4.2 172.6
p44-a 30 75 a 36022 3.4 2182.1 7.6
p46-a 30 75 a 48701 1.5 7.5 3.0 94.4
p47-a 30 75 a 66230 10.3 87.8 18.8 210.3
p49-a 30 75 a 79614 3.1 143.3 13.7 790.9
p51-a 30 90 a 9060 29.4 416.4 94.9 296.4
p52-a 30 90 a 34652 2.0 27.7 13.0 86.6
p53-a 30 90 a 30038 1.0 2.5 2.2 14.8 340.0
p55-a 30 90 a 69610 2.6 533.7 3.8 2782.5
p20-b 20 40 b 13502 0.9 16.3 1.3 34.3 1053.7
p21-b 20 40 b 3870 0.9 6.3 1.2 10.7 400.9
p26-b 20 50 b 2499 1.1 9.9 8.4 17.2 384.0
p30-b 20 50 b 5650 15.0 1239.7 36.6 2697.8
p33-b 20 50 b 20024 8.0 973.4 26.8 1704.8
p36-b 30 60 b 8746 1.8 39.5 11.0 112.2 2340.7
p37-b 30 60 b 7681 8.0 10.2 27.7 25.8
p39-b 30 60 b 20762 1.1 2.5 2.2 16.4 3111.7
p40-b 30 60 b 31047 2.5 41.0 5.9 191.4
p44-b 30 75 b 18247 3.6 1444.3 6.9
p46-b 30 75 b 24716 1.8 8.2 2.8 122.6 2676.4
p47-b 30 75 b 33489 16.8 428.2 36.0 1397.0
p49-b 30 75 b 40104 2.6 136.9 15.2 383.5
p52-b 30 90 b 17663 2.5 31.2 18.8 104.5
p53-b 30 90 b 15376 1.1 2.7 1.7 19.3 808.0
p55-b 30 90 b 35162 2.6 663.4 3.6
p18-d 20 40 d 14418 1.2 6.5 1.2 30.3 555.3
p20-d 20 40 d 24862 0.8 2.9 1.0 11.2 604.1
p33-d 20 50 d 38010 0.7 14.2 1.1 31.9 740.3
p34-d 30 60 d 8323 3.7 4.7 5.2 11.4 188.0
p35-d 30 60 d 8177 2.8 8.2 3.5 39.1 459.9
p42-d 30 75 d 11062 2.7 14.6 40.4 106.3 903.5
p44-d 30 75 d 38049 0.7 3.9 1.8 17.6 211.6
p47-d 30 75 d 67682 1.0 1.8 1.5 15.4 416.9
p48-d 30 75 d 85720 6.2 7.4 21.2 18.6 1408.7
p49-d 30 75 d 92198 1.9 3.1 2.8 14.9 1325.2
p55-d 30 90 d 84207 29.2 599.5 90.4 3670.7
p57-d 30 90 d 107404 10.3 5.0 11.6 11.0 323.9

Table 13. Results on CNLP instances

partially supported by Russian Foundation for Basic Research, grant 12-07-33045
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